
NOTATION 

T) temperature; v) growth rate; z) direction of growth; S) crystal surface; n) normal 
to S; ~(• radius of curvature of S; x ) radius vector (x, y, z); (r, ~)) polar coordinates 
in the x-y plane; D) thermal conductivity; ci, i = I, 2) heat capacity; L) latent heat of 

melting; g) surface internal energy; y) surface free energy; Tmelt) melting temperature of 

a planar crystal; K) linear kinetic coefficient; I = 2D/v) length scale; t = (T - T~)c=L -I) 
nondimensional temperature; p = vp0/2D) Peclet number. The subscripts i = i, 2 denote the 
solid and liquid phases respectively; primes denote nondimensional quantities. 
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DETERMINING THE THERMAL CONDUCTIVITY OF CERAMIC MATERIALS BY SOLVING 

THE INVERSE HEAT-CONDUCTION PROBLEM 

V. E. Ved', V. A. Ivanov, S. F. Lushpenko, 
and Yu. M. Matsevityi 

UDC 536.21 

A method is propounded for determining the temperature dependence of the thermal 
conductivity of ceramic materials. It is based on a solution of the inverse 
heat-conduction problem. An installation is described for carrying out the 
thermophysical experiment. The temperature dependence of thermal conductivity 
of a ceramic material has been obtained. 

The implementation of effective high-temeprature processes and equipment depends to 
a large extent on investigations of materials, and a considerable part of this consists of 
exploring the thermophysical characteristics of the materials. Such investigations, as a 
rule, reduce to solving a number of complex technical and mathematical problems. This ap- 
plies to the experimental-computational determination of thermal conductivity, although here 
it is usually not necessary that a temperature field varying according to a specified pro- 
gram be maintained, it being sufficient to ensure a stable steady-state heat transfer. None- 
theless, growing demands for precision in the determination of thermal conductivity over 
a wide temperature range make it necessary to perfect both the techniques of the thermal 
experiment and the processing of the results. Very promising in this connection is the use 
of methods of solving the inverse heat-conduction problem (IHCP) [i, 2], allowing a widen- 
ing of the range of variation of thermal loading of the specimen, which is suitable for the 
indirect measurement of thermal conductivity. This makes it possible to lower the demand 
for precise experimental data, and to raise the quality of identifying the thermal conduc- 
tivity, by simultaneous processing of information received from a large number of points 
at which temperature is monitored, or under the conditions of an increased number of variants 
of thermal loading. Advantages of the IHCP methods consist of being able to take into account 
properly and without special difficulties, the dependence of thermophysical properties on 
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temperature. This is especially important because the thermophysical properties of most 
materials depend significantly on temperature. During heating, the thermal conductivity 
of ceramic materials falls sharply, sometimes by ten times [3]. Neglecting this may lead 
to inadmissible errors in heat engineering calculations. For taking into account the temper- 
ature dependence of thermal conductivity it is necessary to resort to increased complication 
in the procedure for modeling the temperature fields, using, for this, special methods and 
computing techniques. Here, as a rule, numerical as opposed to analytic methods are used. 
This is because of the nonlinearity, especially with multidimensional arrangements, and comp] 
configuration of the objects examined. 

In the present work special attention is given to a procedure for modeling nonlinear 
thermal processes in multilayered objects, which may be ascribed to the numerical-analytic 
methods for solving the heat-conduction problem. 

A determination of the temperature dependence of thermal conductivity I(T) with the 
aid of the proposed method is implemented in accordance with one of the strategies for solvir 
the intrinsic IHCP described in detail in [4, 5]. This strategy proposes multiple modeling 
of the temperature field of the specimen being studied, accompanied by a selection of the 
parameters of the dependence of thermal conductivity on temperature being sought. The solu- 
tion will be attained when the averaged divergence between the modeled and experimentally 
observed temperatures becomes equal to the measuring accuracy or reaches a minimum. 

The effectiveness of the solution of the inverse problem and also the expenditure of 
machine time and memory are determined chiefly by the structure of the modeling procedure. 
The modeling of a thermal process in a nonlinear medium can be simplified if the original 
nonlinear heat flow equation is transformed beforehand, as for example with the aid of the 
Kirchhoff substitution: 

T 
o = .I ~ (T) dT. ( 1 )  

o 

This makes it possible to eliminate the nonlinearity in the left part of the heat-conduction 
equation, and to make the majority of the coefficients of the corresponding system of finite- 
difference equations into constants. It is true that the boundary conditions sometimes there 
by become complicated, and it becomes necessary to introduce in the computing scheme a block 
performing the inverse transformation of the function O into T. The inverse transform pro- 
cess, with its apparent complexity and ambiguity, has limited considerably the field of use 
of methods employing the Kirchhoff and Goodman transformations. The additional effort ex- 
penditure (incidentally, not so large) associated with the inverse transformation is, how- 
ever, repaid by the increased speed of computations on a digital computer, or the simplifi- 
cation and decreased cost of computing when the modeling is done on an analog or hybrid 
computer. 

The choice of computing method for making the transformation T(O) is largely determined 
by its being single-valued, on account of the strict positivity of the function X(T). 

Since X(T) is usually the result of an analytic approximation of the dependence in tabu- 
lar form, it is necessary that the condition I(T) > 0 be fulfilled at least in the tempera- 
ture interval [Tmin, Tmax] characteristic of the given heat-conduction problem. Then O(T), 
as the integral of a positive function, will grow monotonically in this interval, i.e., 
a reciprocal single-valued correspondence between T and O is always observed in the range 

[Tmin, Tmax]. 

Thus, the temperature value corresponding to the known O may be found as a root of the 
equation 

o (T) - -  o = o, 

and in the interval [Tmin, Tmax] there will be only one root. It is convenient to find it by 
a one-dimensional search for the minimum of the difference function 

E (T) = IO (T) - -  O[ o r  E (T) = (O (T) - -  O) z. 

It is important to note that the transformation may be implemented both for continu- 
ous and piecewise continuous dependences l(T). Let, for example, the temperature interval 
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[Tmi n, Tma x] be broken into s intervals, with the temperature dependence of thermal conduc- 

tivity in each of these being represented by different functions: 

[%1 (T), Tin1 n < T < T~, 
%(T)=l.%o.!T!, TI < T < To, 

[)~ (T), T~_~ ~ T ~ T~a~. 

In this case the Kirchhoff transformation is written 

( T 

I 
bf %l(T) dT' Tmi~<T<T1,  

I S ~ (T) dT + ~2 (T) dT, T~ ~ T < T2, 
o ( r )  = { 

T1 s--I Ti T 

0 i:9 Ti_ I T~_I 

This function has the properties of continuity and monotonicity. Hence, even in the case 
in which the thermal conductivity is represented by piecewise continuous functions, it is 
possible to use the Kirchhoff substitution. In particular, the use of this substitution 
proves to be effective when I(T) is given in the form of polynomial splines, including the 
piecewise-constant, piecewise-linear, and piecewise-quadratic functions often used in heat 
engineering calculations. 

The methods described above are suitable not only for homogeneous media, but also in 
calculations of the thermal state of heterogeneous systems. These methods allow the volume 
of computing to be reduced in many important practical cases. For example, the solution 
of IHCP, the aim of which is the identification of thermophysical characteristics, often 
reduces to multiple modeling of the temperature field of an object consisting of a layer 
of the material being investigated and one or more layers of standard materials. At each 
stage of the modeling, a nonlinear heat-conduction problem is solved, each time with a new 
variant of the temperature dependences of thermophysical properties. If this inverse prob- 
lem will be solved by a net method, without prior linearization of the heat-conduction equa- 
tion, then at each stage of the modeling, the error in the solution will be increased owing 
to systematic error of the finite-difference approximation, the more so the larger are the 
differences in the thermophysical properties of neighboring layers, and the more pronounced 
their dependence on temperature. The Kirchhoff substitution mitigates this problem, and 
in the solution of the steady-state one-dimensional problem reduces systematic error prac- 
tically to zero. This is illustrated by the following example of a solution of the heat- 
conduction problem for a multilayered plate. 

Let us suppose that the temperatures Tmi n and Tma x on the surfaces of the plate are 
known, i.e., boundary conditions of the ist kind are specified. Information about the thermal 
conductivities of all s layers is available in the form of a piecewise continuous functions 
It(T), ~2(T), ..., As(T). Also known are the temperature dependences of the thermal contact 

resistances between layers RcI(T), Rc2(T), .... RCs_I(T). 

For linearizing the heat-conduction equations in each layer, we make the substitution 

T 

e, ( r )  = I ( r )  + c,,.  i = 1. s. 

Here, in distinction to Eq. (i), there is an unknown coefficient C i which is needed for match- 
ing the functions Oi at the junctions of the layers. 

We stipulate continuity of the function O(x) throughout the whole region of the problem 
[0, L]. It is guaranteed inside the layers by the properties of function O~, and, with x 
corresponding to the boundaries of the layers f I, 12, -.., /s-l, by the condition 

O~(li)=Oi§ i =  1, s - -1 .  (2) 
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Since at the boundaries of the layers the function T(x) is discontinuous on account of the 
thermal resistance, one and the same coordinate will correspond to two temperatures. These 
are the maximum Tmaxi of one layer and the minimum Tmini+i of the neighboring layer. Follow- 

ing from this, Eq. (2) may be written in the form 

@i (T~xi)  = 0~+~ (Tm~i+~) ,  f = 1, s - -  ~. 

From this we get formulas for calculating the unknown coefficients 

Train .  ~ T~x i 
C,+~= t .... s ! %~(T)dT+C~, i = l ,  s - -1 .  (3) 

0 

The coefficient C i may be fixed arbitrarily, for example, C i = 0. 

The relationship between Tmini+i and Tmaxi is determined by the boundary conditions of 

the 4th sort. Having chosen at the first stage of the solution of the problem the tempera- 
tures Tmin2 , Tmin~ , ..., Tmins as unknowns, we represent the maximum temperatures of the sur- 

faces of the contacts in the form 

q I (4) 

where q is the heat flux density, q = [@s(Tmax) - @i(Tmin)]/L. 

The conditions for the conjugation of layers, determining the equalities of flows, and 
expression (2) lead to the known solution of the one-dimensional steady-state linear heat- 
conduction problem, when @(x) is a continuous linear function. Therefore, the system of 
equations in terms of Tmi n may be written in the following way: 

@~ (T,~,~ = @i (T,~,>) + &_zq, i = 2, s. (5) 
This system of nonlinear algebraic equations can be solved by iterative methods, as, 

for example, by numerical minimization of the sum of the squares of the relative difference 
between the right and left parts of the system: 

s 

/-=2 

At t h e  second s t a g e  of  t he  s o l u t i o n ,  having de te rmined  Tmini , Tmaxi , and Ci, we can 
calculate 

@(x)=O z(Tm,~) ~ x - - l i_ l  (O i(Tma~)_oi(Tm~)),  lz_ i ~ x < l ~ ,  
li--l~-i 

and then ,  us ing  the  i n v e r s e  K i r c h h o f f  t r a n s f o r m  p rocedure ,  ob t a in  T(x) .  

As a whole,  t he  i t e r a t i o n  p roces s  of  c a l c u l a t i n g  T(x~ i s  o rgan ized  in t he  fo l l owing  
way: a f t e r  t he  cho ice  of  t h e  i n i t i a l  approximat ion  Tmini 0), f o r  example,  as 

TCO) =Tmin+li_i(Tma __Tmin)/L i 2, s, min~ 

Ci (~  i s  c a l c u l a t e d  from Eqs. (3) and (4) .  The d i f f e r e n c e  from the  system of  Eq. (5) is  
determined, and, by one of the minimum-seeking strategies, the desired degree of approxi- 
mation of this difference to zero is attained. Knowing the coordinate values of the mini- 
mum, the quantities @(x) and then T(x) can be obtained at the given points. 

The approach described makes it possible to solve the forward nonlinear steady-state 
heat-conduction problem without a large expenditure of machine time. Solution of the prob- 
lem with similar accuracy by finlte-difference methods takes ten times longer. Using the 
described procedure for modeling the heat-transfer process in a two-layer object allows the 
intrinsic problem of the temperature dependence of thermal conductivity of composition 
ceramic materials to be solved efficiently. 

A thermophysical experiment with the test materials was carried out in a unit specially 
constructed for this purpose, a diagram of which is given in Fig. i. In the unit are the 
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Fig. i. Block diagram of the unit used for carrying out the experiment. 

Fig. 2. Comparison of the dependence of X(W/m.K) on T(K), as the result 
of solving the control problem (i), and with known thermal conductivity 
AI20 ~ (2). 

following blocks: i) heater; 2) specimen of material of known thermal conductivity; 3) speci- 
men of material of unknown thermal conductivity; 4) refrigerator; 5) heat-reflecting screen; 
6) vacuum chamber; 7) commutator; 8) device for recording thermometric information; and 9) 
block for setting the temperature regime. The installation was based on the VUP-5 universal 
vacuum station. 

The heater is a hollow metal cylinder, inside which is housed a tungsten spiral. Con- 
trol of the heater is by means of block 9, which allows the temperature to be set with dis- 
cretization • K, and also permits the heater temperature to be changed over a wide range 
when using a nonstationary regime for measuring thermal conductivity. 

The reference and test specimens were made in the form of cylinders of diameter i0 mm 
and length 30 mm. The refrigerator consisted of a hollow copper cylinder with internal water 
cooling. 

The heat-reflecting cylindrical screen, constructed of metal foil, was intended to re- 
duce the radial component of lateral heat leaks. A reliable barrier for the convective com- 
ponent of these leaks was evacuation to a pressure of 1.3 • i0 -~ Pa. A directed heat flow 
is thus created, and the reference-test specimen system can be considered as a two-layer 
flat semi-infinite plate. Thermometric information is taken off by the recording arrangement, 
which is switched in turn via a commutator to three temperature sensors. 

This experimental unit allows the test material to be heated to 1300 K, and the tempera- 
ture can be recorded at three points in the reference-test specimen system, which makes it 
possible to solve the IHCP to get reliable information on the temperature dependence of 
thermal conductivity through the temperature range important in practice. 

An evaluation of the accuracy of the determination of thermal conductivity was made 
by solving a control problem, the results of which are given in Fig. 2. 

Aluminum oxide was used as a test material, the thermal conductivity data of which are 
given in [6]. The upper curve of Fig. 2 was drawn from this source, and the lower curve 
from the results obtained by solving the IHCP. With agreement in the general character of 
the curves, a difference, reaching 20-30%, is seen in the values of thermal conductivity. 
This may have been caused not only by experimental and computing errors, but also by the 
presence of impurities, preculiarities of the technology of preparing specimens, etc. 

Following the method described for solving theIHCP, we obtained the temperature depen- 
dence of thermal conductivity of a new promising thermoinsulating material, in the compo- 
sition of which aluminum oxide was dominant. This dependence in the temperature range from 
275 to 875 K was found in the form of a single analytic function, consisting of a linear 
combination of high-order Chebyshev polynomials. As input information we took temperature 
data obtained from the test specimen and copper standard in 20 experiments over different 
temperature ranges in the experimental unit described above. 

The function X(T) is shown graphically in Fig. 3. At temperatures above 675 K (Fig. 
3b) the thermal conductivity falls to a value typical of highly effective thermal insulators. 
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Fig .  3. Dependence o f  X on T f o r  the m a t e r i a l  s tud ied  in  
the two temperature ranges, K: a) 275-675; b) 675-875. 

It is, moreover, lower than that of pure aluminum oxide. This is explained by the presence 
in the test material, apart from aluminum oxide, of other specially chosen components which 
also give it the necessary durability and guarantee high production effectiveness in the 
manufacture of various heat-reflecting components and coatings. 

NOTATION 

%(T), temperature dependence of thermal conductivity; ~, quantity introduced by Kirch- 
hoff substitution; Tmin, Tmax, bounds of the temperature range; E, difference value; s, numbe~ 
of intervals; RC, thermal contact resistance; C, undefined constant; x, spatial coordinate; L~ 
length; q, heat flux density. 

6. A. S. Okhotina (ed.), The Thermal Conductivity of Solids: 
Moscow (1984). 

LITERATURE CITED 

i. L. A. Kozdoba and P. G. Krukovskii, Methods for Solving Inverse Heat Transfer Problems 
[in Russian], Kiev (1982). 

2. O. M. Alifanov, Inverse Heat Exchange Problems [in Russian], Moscow (1988). 
3. R. E. Krzhizhanovskii and Z. Yu. Shtern, Thermophysical Properties of Nonmetallic Materi- 

als (Oxides) [in Russian], Leningrad (1973). 
4. Yu. M. Matsevityi and S. F. Lushpenko, Promst. Teplotekh., 8, No. 4, 51-56 (1986). 
5. Yu. M. Matsevityi and S. F. Lushpenko, Elektron. Modelirovanie, 2, No. 5, 3-7 (1987). 

Reference Book [in Russian], 

CALCULATION OF THE DIFFUSION COEFFICIENTS OF ALKALI AND ALKALI-EARTH 

METAL VAPOR IN HELIUM BY EXCHANGE PERTURBATION ANALYSIS 

K. M. Aref'ev and N. B. Balashova UDC 535.15 

The potential energy of metal-helium interaction is calculated by the quantum- 
mechanical exchange perturbation theory. The results are used to calculate the 
diffusion coefficient of alkali and alkali-earth metal vapor in helium. The 
values of the saturated-vapor pressure of barium at ]170-1420 K are refined 
from a comparison with experimental diffusion data. 

Calculation of the diffusion coefficient of monoatomic vapor of metals in helium from 
the formula of the first-approximation Enskog-Chapman theory [i] 

pD n 3 -1/2~ (kT)3/m12 ( 1 ) 
16~ ~2 0(~,~)* u 1 2 - - 1 2  

r e q u i r e s  t h a t  t h e  p o t e n t i a l  e n e r g y  ~ (R)  o f  t h e  i n t e r a t o m i c  i n t e r a c t i o n  be known. The r e d u c e d  
c o l l i s i o n  i n t e g r a l  ~12 (1 ,  1)* and t h e  c r o s s  s e c t i o n  Q]~'l)~ff~2Q(z,1)* depend on t h i s  e n e r g y .  
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